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Abstract
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The asset pricing literature on stocks mainly focuses on claims to all future dividends.1

However, analogously to zero-coupon bonds, which contain information about discounting

at different horizons for fixed income securities, having information on the prices of

dividends at different horizons can improve our understanding of equity prices. To this

end, we study the prices of assets which entitle the holder to the realized dividends of

the aggregate stock market for a period of up to three years. We refer to these assets as

“short-term” assets. To compute the prices of these short-term assets, we apply put-call

parity to a newly constructed, and importantly better synchronized, data set of liquid,

exchange-traded S&P500 index options. We then compare the asset pricing properties of

the claims to short-term dividends to the pricing of the aggregate stock market, which is

the claim to all future dividends.

Using this approach, we document seven properties of short-term assets:

1. The price of the first two years of dividends constitutes about 5% of the total price.

2. Expected returns and Sharpe ratios on the short-term asset are higher than on the

aggregate market.

3. The return volatility of the short-term asset is higher than on the aggregate market.

4. The CAPM beta with respect to the aggregate stock market is 0.5.

5. The CAPM alpha is 10% per annum.

6. The prices of short-term dividends are more volatile than their realizations, pointing

to excess volatility on the short end of the equity curve.

7. The returns on the short-term asset are strongly predictable.

These properties have important implications for empirical and theoretical asset pricing.

The first five properties, combined with the fact that the CAPM alphas are virtually

unaffected if we include size, value or momentum factors, suggest that the short-term

assets are a new set of test assets that might be useful in cross-sectional asset pricing

tests.2 Second, since Shiller (1981) pointed out that stock prices are more volatile than

subsequent dividend realizations, the interpretation has been that discount rates fluctuate

over time and are persistent. The long duration of equity makes prices very sensitive to

small movements in discount rates, thereby giving rise to excess volatility. We show,

however, that the same phenomenon arises at the short end of the equity claims curve.

This suggests that a complete explanation of excess volatility is able to generate excess

volatility both for the aggregate stock market and for short-term dividends. The excess

1Four notable exceptions are Da (2009), Lettau and Wachter (2007), Hansen, Heaton, and Li (2008),
and Croce, Lettau, and Ludvigson (2009).

2Lewellen, Nagel, and Shanken (2009) argue that the standard set of test assets has a strong factor
structure, and that it would be valuable to have a new set of test assets.
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variation in prices also suggests that discount rates fluctuate, and we should therefore find

that prices, normalized by some measure of dividends, forecast returns on the short-term

asset. We show that this is indeed the case, leading to the seventh property.

As we are the first to empirically explore the pricing properties of these short-term

assets, it is useful to compare them to a theoretical benchmark. Recent consumption-

based asset pricing models have made substantial progress in explaining many asset

pricing puzzles across various markets. We focus on the external habit formation model

of Campbell and Cochrane (1999), the long-run risks model of Bansal and Yaron (2004),

and the variable rare disasters model of Gabaix (2009). All of these models allow us to

directly compute the implied theoretical price of short-term assets. We find that these

models are not able to reproduce the facts that we document, which suggests that our

short-term assets offer an interesting and non-trivial new set of moments to match.

Our paper also relates to Lettau and Wachter (2007) and Croce, Lettau, and Ludvigson

(2009). Lettau and Wachter (2007) argue that habit formation models as in Campbell

and Cochrane (1999), generate an upward sloping term structure of expected returns as

shocks to the discount factor are priced. Firms with long-duration cash flows have a high

exposure to such shocks, and should therefore have a higher risk premium than firms with

short duration cash flows. If one adheres to the view that value firms have short-duration

cash flows and growth firms have long-duration cash flows, this would imply that there is

a growth premium, not a value premium. Lettau and Wachter (2007) propose a reduced-

form model that generates a downward sloping term structure of expected returns and

illustrate the correlation structure between (un)expected cash flow shocks and shocks to

the price of risk and stochastic discount factor that is sufficient to generate a downward

sloping term structure. Croce, Lettau, and Ludvigson (2009) argue that the long run risk

model as proposed by Bansal and Yaron (2004) also generates an upward sloping term

structure of expected returns. However, if the agent in the model can not distinguish

between short-term and long-term shocks, the term structure can be downward sloping.

Studying the properties of the short-term assets is not only interesting from an

academic perspective. Recently, dividend strips, futures, and swaps have received a lot of

attention in the practitioners’ literature.3 Several banks are offering OTC dividend swaps

on a range of stock indices. With such a contract, the dividend purchaser pays the market-

implied level that is derived from an equity index derivative multiplied by the overall

exposure per index point (the fixed leg). The counterparty, with a long position in the

equity index, pays the realized dividend level multiplied by the exposure per index point.

3See for example Brennan (1998), Manley and Mueller-Glissmann (2008) and Barclays Capital (2008).
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For the S&P500, Standard and Poor’s has introduced the S&P500 Dividend Index, which

is a running total of dividend points. The index is reset to zero after the close on the third

Friday of the last month of every calendar quarter, to coincide with futures and options

expirations. It measures the total dividend points of the S&P500 since the previous

reset date and is used by derivative traders to hedge their dividend positions. Further,

from 1982 to 1992, investors could invest in derivatives at the American Stock Exchange

(AMEX) that split the total return on individual stocks into a price appreciation part and

a dividend yield part. Also in the UK, split-capital funds offered financial instruments

that separate investment in a fund’s price appreciation and its dividend stream in the late

90s. Wilkens and Wimschulte (2009) discuss the European market of dividend futures

that started mid-2008.

The basic idea of the paper is summarized in the following three equations. The price

of a stock or equity index St is given by the discounted value of its dividends Dt:

St =

∞∑

i=1

Et (Mt:t+iDt+i) ,

with Mt:t+i =
∏i

j=1 Mt+j , the product of stochastic discount factors. We can decompose

the stock index as:

St =

T∑

i=1

Et (Mt:t+iDt+i)

︸ ︷︷ ︸

price of the short-term asset

+

∞∑

i=T+1

Et (Mt:t+iDt+i)

︸ ︷︷ ︸

price of the long-term asset

,

where the short-term asset is the price of the first few dividends, and the long-term asset

is the price of the remaining dividends. We use Pt,T to denote the value of the short-term

asset given by:

Pt,T ≡

T∑

i=1

Et (Mt:t+iDt+i) . (1)

We synthetically construct the price of the first few dividend payments using tick-level

options data obtained from Market Data Express, the data vendor of the CBOE. In

principle, any derivative contract can be used to back out the price of dividend strips

up until the maturity of the derivative contract. We choose to use option contracts for

most of our analysis because there is a liquid market for these contracts even for longer

maturities. There is a liquid market for futures contracts for shorter maturities, but the

liquidity drops markedly as the maturity of the futures contracts increases. For maturities

for which both futures and options contracts are available, the implied prices of the short-
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term asset are very similar.

We proceed as follows. In Section 1, we discuss various ways to trade the short-term

asset, either by creating it synthetically using index derivatives or by trading dividend

derivatives directly. Section 2 discusses our dataset. In Section 3 we discuss the empirical

results. In Section 4, we compare our findings with several leading asset pricing models.

We present several robustness checks in Section 5. In Section 6 we discuss several possible

extensions. Section 7 concludes.

1 The market for dividends

In this section, we describe several ways to trade dividends separately from the capital

gains component. First, the short-term assets can be created synthetically using S&P500

index options or futures contracts. This is the approach we follow empirically in this

paper. In 1990, the Chicago Board Options Exchange (CBOE) introduced Long-Term

Equity Anticipation Securities (LEAPS), which are options with a relatively long maturity

ranging up to three years. The maximum maturity of LEAPS for the sample period in

our dataset is displayed in Figure 1. As a result of the issuance cycle of LEAPS, the

maximum available maturity fluctuates over time. We can then use the put-call parity

relationship for a European option to compute its value:

Pt,T = pt,T − ct,T + St − Xe−rt,T (T−t), (2)

where pt,T and ct,T are the prices of a European put and call option at time t, with maturity

T and strike price X. We use TAQ options data on the S&P500 index to measure the

prices of the short-term asset as accurately as possible.

One potential disadvantage of replicating the asset described above, is that a long

position in the index is required. As index replication is not costless, we also consider

investing in a so-called dividend steepener, given by:

Pt,T1,T2
= Pt,T2

− Pt,T1

= pt,T2
− pt,T1

− ct,T2
+ ct,T1

− X
(
e−rt,T2

(T2−t)
− e−rt,T1

(T1−t)
)
. (3)

This asset entitles the holder to the dividends paid out between period T1 and T2, T1 < T2.

Replicating this asset does not require a long position in the index and simply involves

buying and writing two calls and two puts, in addition to a cash position. Furthermore,

this strategy does not involve any dividend payments until time T1, which could be
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important for tax reasons. Finally, the steepener is interesting as a macro economic

trading strategy, as it can be used to bet on the timing of a recovery of the economy

following a recession. During severe recessions, firms slash dividends as to increase them

when the economy rebounds. By choosing T1 further into the future, one takes a bet on

a later recovery.4

A second way to synthetically create the short-term asset is by using futures contracts.

The cost of carry formula for equity futures implies:

Pt,T = St − ert,T (T−t)Ft,T . (4)

By applying the cost of carry formula for equity to two different maturities, the price of

the dividend steepener for period T1 to T2, T1 < T2, can be computed as:

Pt,T1,T2
= ert,T1

(T1−t)Ft,T1
− ert,T2

(T2−t)Ft,T2
.

The steepener now only involves two futures contracts and does not require any trading

of the constituents of the index. By no-arbitrage, the prices implied by equity options

and futures need to coincide. Since LEAPS have longer maturities than index futures, we

rely on options for most of our analysis. For the maturities for which both futures and

options data is available, we show that the prices obtained from either market are close

indeed.

In addition to synthetically creating the short-term asset, it is now also possible to

trade dividends directly via dividend derivatives such as dividend swaps, dividend futures,

and dividend options. Most transactions are OTC, but several exchange traded products

have been introduced recently. For instance, the CBOE announced in December 2009 to

introduce options on S&P500 index dividends. This development follows the introduction

of an array of dividend derivatives at the Eurex. The Eurex introduced on June 30, 2008

dividend futures on the Dow Jones EURO STOXX 50 Index,5 and in February 2010,

futures are available on five different indices.6 In addition, the Eurex now introduced

dividend futures on the constituents of the Dow Jones EURO STOXX 50 in January

2010. As measured by open interest, the size of the market for index dividend futures is

already 20% of the size of the market for index futures at March 30 2010, illustrating the

4See also “Dividend Swaps Offer Way to Pounce on a Rebound,” Wall Street Journal, April 2009.
5See http://www.eurexchange.com/download/documents/publications/index dividend swaps 1 en.pdf

for more information.
6A more detailed description can be found at:

http://www.eurexchange.com/download/documents/publications/Eurex Produkte 2010 en.pdf.
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rapid developments of dividend trading.7

2 Data and dividend strategies

2.1 Data sources

We use a new data set provided by the CBOE on intra-day trades and quotes on S&P500

options between January 1996 and May 2009 with maturities up to 3 years. The data

contains all options contracts for which the S&P500 index is the underlying asset. We

obtain tick-level data between January 1996 and May 2009 of the index values and

futures prices of the S&P500 index from Tick Data Inc. Further, equation (5) requires

a continuously-compounded interest rate as input. This interest rate is calculated from

a collection of continuously-compounded zero-coupon interest rates at various maturities

and provided by OptionMetrics. This zero curve is derived from BBA LIBOR rates and

settlement prices of CME Eurodollar futures.8 For a given option, the appropriate interest

rate input corresponds to the zero-coupon rate that has a maturity equal to the options

expiration date, and is obtained by linearly interpolating between the two closest zero-

coupon rates on the zero curve.9 Finally, we obtain daily return data with and without

distributions from S&P index services. Daily dividends can then be computed by taking

the difference between these two returns and multiplying by the lagged value of the index.

For our purposes, it is important that the inputs in the put-call parity formula are

recorded as close to each other as possible during the day.10 Our option dataset combined

with index values from Tick Data allows us to match trades within a minute interval.

Using closing prices as available in Optionmetrics for all quantities does not guarantee that

the index value and option prices are recorded at the same time and induces substantial

noise in our computations (see also Constantinides, Jackwerth, and Perrakis (2009)).

Instead, we therefore select option quotes for puts and calls between 10am and 2pm that

trade within the same minute, and match these quotes with the tick level index data,

again within the minute. Changing the time interval to either 10-11am or 1-2pm has no

effect on our results, as we demonstrate in Section 5.

To construct the prices of dividend strips, we first find all couples of put and call

7The daily dollar volume averages to $33.4 Billion in 2009, see:
http://www.reuters.com/article/idUSLDE60A1OO20100111.

8We also use data from Bloomberg to replicate the OptionMetrics yield curves and using this interest
rate instead is inconsequential for the results.

9Alternative interpolation schemes give the same results at the reported precision.
10This is particularly important for the options and index data and less so for the interest rate data.
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contracts that have the same maturity and strike price within at the last trading day of

a particular month. Of the resulting matches, we keep the matches for each strike and

maturity that trade closest to each other in time. This typically results in a large set of

matches for which the quotes are provided within the same second of the day. For each

of these matches, we use the put-call parity to calculate the price of the dividend strip.

We then take the median across all prices for a given maturity, resulting in the final price

we use in our analysis. By taking the median across a large set of dividend prices, we

mitigate potential issues related to measurement error or market microstructure noise.

To illustrate the number of matches we find for quotes within the same second, Figure 2

reports the average number of quotes per maturity during the last trading day of the

month in a particular year. We focus on option contracts with a maturity between 1

and 2 years. The number of quotes increases substantially over time, for instance as a

result of the introduction of electronic trading, but even in the first year of our sample, on

average have nearly a thousand matches per maturity on a given trading day for maturities

between 1 and 2 years.

2.2 Dividend prices

We first construct for each date t and for all maturities T longer than three months the

prices of the dividend claims:

Pt,T = pt,T − ct,T + St − Xe−rt,T (T−t), (5)

where pt,T and ct,T are the prices of a European put and call option on the S&P500 index

at time t, with maturity T and strike price X, and St is the value of the index at time t.

The set of maturities T of these claims is not constant and varies depending on the

option issuing cycle. On average there are around six maturities greater than three months

available at any particular time.

2.3 Returns on dividend strategies

Apart from reporting dividend prices, we also implement two simple trading strategies.

The first trading strategy goes long in the dividend claim. We hold this claim for one

month, receive the dividends within that month, and subsequently sell the claim at the end

of the next month. For example, on January 30th 2009, we go long in a 1.411 year dividend

claim, which entitles the holder to the first 1.411 years of dividends on the index. We

hold this contract for one month, collect the dividends between January 30th and February
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27th and sell the dividend claim on February 27th, which now has a remaining maturity

of 1.329 years. The monthly return series on this strategy is given by:

R1,t+1 =
Pt+1,T−1 + Dt+1

Pt,T

. (6)

The implementation of the trading strategy above assumes that the investor can costlessly

replicate the index. To avoid a long position in the index, we also consider the price at

time t of the dividends between T1 and T2, given by:

Pt,T1,T2
= Pt,T2

− Pt,T1

= pt,T2
− pt,T1

− ct,T2
+ ct,T1

− X
(
e−rt,T2

(T2−t)
− e−rt,T1

(T1−t)
)
, (7)

where T2 > T1 > 1. We hold this claim for one month and sell it in the next period. The

return on this strategy, called strategy 2 hereafter, is given by:

R2,t+1 =
Pt+1,T1−1,T2−1

Pt,T1,T2

. (8)

This return strategy does not require a long position in the index and simply involves

buying and writing two calls and two puts, in addition to a cash position. Furthermore,

this return strategy does not involve any dividend payments until time T1. Further details

on the implementation of these strategies can be found in Appendix A.

3 Main empirical results

In this section, we document the seven facts about the prices and returns on the short-term

asset listed in the introduction.

3.1 Properties of dividend prices

Figure 3 displays the prices of the first 0.5, 1, 1.5, and 2 years of dividends during our

sample period. As expected, the dividend prices drop during the two recessions in our

sample period, as expected growth of dividends drops and discount rates increase. This

effect is more pronounced for the 2-year price. The 0.5 year price of is much more stable.

As dividend prices are non-stationary, it is perhaps more insightful to scale dividend

prices by the value of the S&P500 index. In Figure 4, we plot the prices of the first 0.5, 1,

1.5, and 2 year dividends as a fraction of the index value. The ratios are highly correlated.
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They drop between 1997 and 2001, and slowly increase afterwards. The relative prices

of the dividend steepener can be found by taking the difference of these ratios across

maturities. Second, and perhaps more striking, is that the first two years of dividends

seems low relative to the total. The price of the first two years of dividends only makes

up a small fraction of the total price, only once exceeding 5%, and with an average of

3.36%. At the bottom in 2001, this fraction is lower than 2% of the total value of the

S&P500 index. As a point of reference, if one considers a Gordon growth model with a

constant discount rate of 10% and a dividend growth rate of 6%, then the first two years

of dividends amount to just under 8% of the total index value. We show below that in

recent asset pricing models, the ratio is closer to 10% on average. Even in May 2009,

when presumably risk premia were high and expected dividend growth rates were low,

which would imply that the first dividends should be a large fraction of the index, the

first two years of dividends only make up just under 5% of the total index value in our

data-set. This result provides the first piece of evidence that short-term dividends seem

relatively cheap.

3.2 Properties of dividend returns

We now report the return characteristics of the two investment strategies. Figure 5 and

Figure 6 plot the time series of monthly returns on the two trading strategies. Figure 7 and

Figure 8 display the histogram of returns. The two trading strategies are highly positively

correlated, with a correlation coefficient of 92.2%. Panel A of Table 1 lists the summary

statistics alongside the same statistics for the S&P500 and the market for the full sample

period. For the market, we use the CRSP value-weighted return of all stocks traded on

the AMEX, NYSE, and Nasdaq. Both dividend strategies have a high monthly average

return equal to 1.20% (annualized 14.4%) for trading strategy 1 and 1.15% (annualized

13.8%) for trading strategy 2. Over the same period, the average return on the market

portfolio was 0.54% (annualized 6.5%) and the return on the S&P500 index was only

0.49% (annualized 5.9%). The higher average returns also come with a higher level of

volatility than both the aggregate stock market and the S&P500 index, with monthly

return volatilities of 7.9% for strategy 1 and 9.8% for strategy 2. Over the same period

the monthly market volatility is 4.9% and the volatility of the return on the S&P500

index equals 4.7%. The summary statistics also indicate that dividend returns tend to

have fatter tails than both equity indices. Despite the higher volatility, the dividend

strategies result in substantially higher Sharpe ratios. The Sharpe ratios of the dividend

strategies are about twice as high as the Sharpe ratios of both the aggregate stock market
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and the S&P500 index. Duffee (2010) shows that Sharpe ratios are lower for Treasury

bonds with longer maturities. We document a similar property in equity markets; Sharpe

ratios are lower for dividend claims with longer maturities.

We find that the volatility of dividend returns is lower in the second part of our sample.

To further analyze the volatility of dividend returns, we estimate a GARCH(1,1) model

for each return series and for the returns on the aggregate stock market. In Figure 10,

we show that the volatility of dividend returns and the aggregate stock market broadly

follow the same pattern. The correlation between the volatility of the dividend returns

of strategy 1 and the S&P500 is 0.52. Table 4 reports the estimates of the GARCH(1,1)-

specification, illustrating that the parameters of the volatility equations are very similar

as well.

The volatility of the two return strategies was substantially higher before 2003 than

after. Table 1 therefore also presents summary statistics for the period before January

2003 (Panel B) and for the period afterwards (Panel C). We are mostly interested in the

average return and volatility of the dividend strategies relative to the same statistics of the

equity indices. We find consistently across both sample periods that the average return on

the dividend strategies is about twice as high as the average return on the market or the

S&P500 index. The volatility of the dividend strategies is high in both sub-periods, even

though the volatilities in the more recent sample are much closer to the levels of volatility

that we record for the equity indices. The Sharpe ratios of the dividend strategies are

comparable across subperiods, and always substantially higher than the ones of either the

aggregate stock market or the S&P500 index. Overall, the conclusions we draw from the

full sample are consistent with our findings in both sub-samples.

Table 2 presents OLS regressions of the two trading strategies on the market portfolio

in excess of the one-month short rate.11 We find that both dividend strategies have a

CAPM beta of 0.49. Secondly, R2 values of the regression are low and close to 10%. The

intercept of the regression equals 0.79% for strategy 1 and 0.73% for strategy 2, which

in annualized terms equals 9.48% and 8.76%. Despite these economically significant

intercepts, the results are not statistically significant at conventional levels due to the

substantial volatility of these two return strategies and the rather short time series that

is available for dividend returns.

Our return series does exhibit some negative autocorrelation, pointing to mean-

reversion in dividend returns. We return to the predictability of dividend returns in

11Using S&P500 index returns instead of the market portfolio leads to almost identical regression
results.
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Section 3.4. Including an autoregressive (AR) term in the regression explains around

8-12% of the variation in returns. Once we include this additional regressors, we find that

the intercept is statistically significant at the 10%.12

Table 3 presents regression results for the Fama-French three factor model, in which

we also include the AR(1)-term in the second and fourth column. The market beta is

unaffected by the additional factors and is estimated between 0.5 and 0.6, depending on

the strategy and specification. We find positive loadings on the book-to-market factor,

which seems consistent with duration-based explanations of the value premium. The

loading is statistically significant in case of the dividend steepener. The coefficient on the

size portfolio switches sign depending on the specification, and has very low significance.

Perhaps most interestingly, the intercepts are hardly affected by including additional

factors; monthly alphas are estimated between 0.56% and 0.70%. These results suggest

that the short-term asset has rather high expected returns that cannot be explained easily

by standard asset pricing models.

The high monthly alphas compensate investors for the risk in the dividend strategy

that cannot be explained by the other priced factors. Our results becomes even more

striking, however, if we account for the fact that dividend growth rates are, to some extent,

predictable, see for instance Lettau and Ludvigson (2005), Ang and Bekaert (2006), Chen,

Da, and Priestley (2009), and Binsbergen and Koijen (2010). To illustrate the degree of

dividend growth predictability in the S&P500 during various sample periods, we follow the

approach developed in Binsbergen and Koijen (2010) to obtain an estimate of expected

dividend growth rates. They combine standard filtering techniques with a present-value

model as in Campbell and Shiller (1988) to forecast future returns and dividend growth

rates. The approach is summarized in Appendix B.

The estimation results are summarized in Table 5. We provide parameter estimates

for three data periods, the post-war period, starting in 1946, the period for which monthly

data on the index is available, starting in 1970, and the period for which daily data is

available, starting in 1989. Consistent with Binsbergen and Koijen (2010), we find that

both expected returns and expected dividend growth rates are predictable. Further, both

expected returns and expected dividend growth rates have a persistent component, but

expected returns are more persistent than expected dividend growth rates. Interestingly,

as the starting date of our sample period increases, both the R2 value of returns as well

as the R2 value of dividend growth rates strongly increases. Over the data period starting

12The reported intercept in the AR specification is comparable to the intercepts of the other
specifications and is adjusted for the persistence coefficient.
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in 1989, we find an R2 value for dividend growth rates of 56%.

This high level of dividend growth predictability combined with the high volatility

of the returns on the short-term dividend claim seems rather puzzling. The volatility

of annual dividend growth rates is only 7%, but a substantial part of the variance can

be explained by simply predictor variables. As such, it would seem that to correctly

price claims on the S&P500 index, we need a model that generates a downward sloping

term structure of expected returns and volatilities, and which generates, or allows for, a

non-trivial degree of dividend growth predictability. The unpredictable part of dividend

growth, which is rather small, then needs to be highly priced.

3.3 Excess volatility of short-term dividend claims

Shiller (1981) points out that prices are more volatile than subsequent dividends, which

is commonly known as “excess volatile.” One explanation has been that discount rates

fluctuate over time and are persistent. The long duration of equity makes prices very

sensitive to small movements in discount rates, thereby giving rise to excess volatility.

Since we study short-term claims, we can directly compare prices to subsequent

realizations. Figure 9 plots the price of the next year of dividends and the realized

dividends during the next year. We shift the latter time series such that the price and

subsequent realization are plotted at the same date to simplify the comparison. This

illustrates that the high volatility of dividend returns is mostly coming from variation in

dividend prices as opposed to their realizations. This points to “excess volatility” at the

short end of the equity curve. An explanation of the excess volatility puzzle therefore

ideally accounts for both the excess volatility of the equity index as well as that of the

short-term assets.

3.4 Predictability of dividend returns

The previous section shows that prices are more variable than subsequent realizations.

This suggests that discount rates fluctuate over time, which in turn implies that we need

to be able to uncover a predictable component in the returns on dividend strategies.

Some of this evidence is present already in Table 2, which shows that dividend returns

are to a certain extent mean-reverting. We extend this evidence by regressing monthly

dividend returns on the lagged value of Pt,T /Dt. This is the equivalent of the price-

dividend ratio for the short-term asset.13 The results are presented in Table 6. We find

13See, among others, Fama and French (1988), Campbell and Shiller (1988), Cochrane (1991), Cochrane
(2006), Lettau and Van Nieuwerburgh (2006), Wachter and Warusawitharana (2009), and Binsbergen and
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that Pt,T /Dt forecasts dividend returns with a negative sign, and is highly significant.

We use OLS standard errors to determine the statistical significance of the predictive

coefficient. To mitigate concerns regarding measurement error in the predictor variable,

we smooth Pt,T /Dt over three months and use this predictor variable instead.14 The

results are reported in the second column and are very comparable to the first column. In

the third column, we simply add an AR(1)-term, which enters significantly. Nevertheless,

the coefficient on Pt,T /Dt is still negative and highly significant.

4 Comparison with asset pricing models

We then compare our findings to the implications for dividend strips of several recent asset

pricing models, including the Campbell and Cochrane (1999) external habit formation

framework, the Bansal and Yaron (2004) long run risk model, the Barro-Rietz rare

disasters framework (Barro (2006)) as presented by Gabaix (2009), and the Lettau and

Wachter (2007) model.

Apart from the Lettau and Wachter (2007) model, which is designed to generate a

downward sloping term structure of expected returns, all the models above generate either

an upward sloping term structure of expected returns (habit formation and long run risk)

or a flat term structure of expected returns (rare disasters). In terms of volatilities, the

term structure is upward sloping for all the models we consider, with the exception of

Lettau and Wachter (2007) who have a slightly upward sloping term structure for the

first 8 years and downward sloping thereafter. The Sharpe ratio is upward sloping in the

habit formation and long run risk models and downward sloping in the rare disaster and

Lettau and Wachter (2007) model.

Because the expected return is so low for both the habit formation model and the long-

run risk model, the fraction of the net present value of the first two years of dividends

makes up a very large fraction of the total index value, with an average above 8%, and

virtually never less than 6%. Recall that the net present value of dividends of the first

2 years that we uncover in the data never exceeds 6% over the 1996-2009 period and

averages around 4%.

Koijen (2010) for the predictability of returns by the dividend yield.
14See Cochrane and Piazzesi (2005) for a similar treatment of measurement error in the forecasting

variable of, in their case, bond returns.
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4.1 External habit formation

In this section we study the term structure of expected stock returns, the term structure

of the volatility of stock returns, and the term structure of the Sharpe ratio in a Campbell

and Cochrane (1999) habit formation model. In this case, the stochastic discount factor

is given by:

Mt+1 = δG−γe−γ(st+1−st+vt+1) (9)

where G represents growth, γ is the curvature parameter, vt+1 is unexpected consumption

growth and st is the log consumption surplus ratio whose dynamics are given by:

st+1 = (1 − φ)s̄ + φst + λ(st)vt+1, (10)

where λ(st) is the sensitivity function which is chosen such that the risk free rate is

constant, see Campbell and Cochrane (1999) for further details. Dividend growth in the

model is given by:

∆dt+1 = g + wt+1 (11)

We use the same calibrated monthly parameters as in Campbell and Cochrane (1999) and

set the correlation between the shocks vt+1 and wt+1 equal to 0.2. We solve the model

using the solution method described in Wachter (2005). Let D
(n)
t denote the price of a

dividend at time t that is paid n periods in the future. Let Dt+1 denote the realized

dividend in period t + 1. The price of the first dividend strip is simply given by:

D
(1)
t = Et (Mt+1Dt+1) = DtEt

(

Mt+1
Dt+1

Dt

)

. (12)

The following recursion then allows us to compute the remaining dividend strips:

D
(n)
t = Et

(
Mt+1D

n−1
t+1

)
(13)

The return on the nth dividend strip is given by:

Rn,t+1 =
D

(n−1)
t+1

D
(n)
t

(14)

We simulate from the model and compute for each dividend strip n the average annualized

excess return (risk premium), E(Rn,t+1)−Rf , the annualized volatility σ(Rn,t+1) and the

Sharpe ratio, which is the ratio of the previous two quantities. The results are plotted

in Figure 12 for the first 480 dividend strips (40 years). The graph shows that the term
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structure of expected returns and volatilities is upward sloping and the Sharpe ratio is

upward sloping as well. The early dividend strips have a low average excess return equal

to 1%.

4.2 Long-run risks

We then consider a long run risk model. We use the model and monthly calibration by

Bansal and Shaliastovich (2009) which is designed to match return moments across stock,

bond and foreign exchange markets. However, highly comparable results are achieved by

using the model and calibration by either Bansal and Yaron (2004) or Bansal, Kiku, and

Yaron (2006). The log stochastic discount factor in this model is given by:

mt+1 = µs + sxxt + sgs

(
σ2

gt − σ2
g

)
+ sxs

(
σ2

xt − σ2
x

)

−λησgtηt+1 − λeσxtet+1 − λgwσgwwg,t+1 − λxwσxwwx,t+1.

The processes for consumption growth ∆ct+1, dividend growth ∆dt+1 are given by:

∆ct+1 = xt + µg + σgtηt+1,

∆dt+1 = µd + φxxt + ϕdσgtηd,t+1

The three state variables in the model are xt, which is the slowly time-varying mean

of consumption and dividend growth (the long run risk component), σ2
xt, which is the

stochastic variance of the long-run risk component, and σ2
gt, which is the stochastic

variance of the short-term risk component.

xt+1 = ρxt + σxtet+1,

σ2
g,t+1 = σ2

g + νg

(
σ2

gt − σ2
g

)
+ σgwwg,t+1,

σ2
x,t+1 = σ2

x + νx

(
σ2

xt − σ2
x

)
+ σxwwx,t+1.

We compute dividend strips in the same manner as described in the previous subsection,

and we compute the average annualized excess return, volatility and Sharpe ratio. More

details on how to compute the dividend strips are provided in Appendix B. The results

are plotted in Figure 13. Interestingly, the results are very similar to the habit formation

model. The terms structure of expected returns and volatilities is upward sloping and the

Sharpe ratio is upward sloping as well.
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4.3 Variable rare disasters

We then consider the variable rare disasters model by Gabaix (2009). In this case, the

stochastic discount factor is given by:

Mt+1

Mt

= e−δ
×

{

1 if there is no disaster at time t+1

B−γ
t+1 if there is a disaster at time t+1

(15)

where Bt+1 measures the drop in consumption in case a disaster hits, and δ is the sum of

the subjective discount factor and the aggregate growth rate. The dividend process for

stock i takes the form:

Di,t+1

Dit

= egiD
(
1 + εD

i,t+1

)
×

{

1 if there is no disaster at time t+1

Fi,t+1 if there is a distater at time t+1
(16)

where εD
i,t+1 > −1 is an independent shock with mean 0 and variance σ2

D, and Fi,t+1 > 0

is the recovery rate in case a disaster happens. The resilience of asset i is defined as:

Hit = ptE
D
t

[
B−γ

t+1Fi,t+1 − 1
]

where the superscript D signifies conditioning on the disaster event and pt is the

probability of a disaster. Instead of modeling each component of Hit, Gabaix (2009)

assumes that Ĥit ≡ Hit − Hi∗, follows a near-AR(1) process given by:

Ĥi,t+1 =
1 + Hi∗

1 + Hit

e−φH Ĥit + εH
i,t+1 (17)

where εH
i,t+1 has a conditional mean of 0 and a variance of σ2

H , and εH
i,t+1 and εD

i,t+1 are

uncorrelated with the disaster event. Further details are provided in Appendix D.

In this model, the term structure of expected returns is flat. The reason is that

strips of all maturities are exposed to the same risk in case of a disaster. Further, the

return volatility is increasing with maturity. The reason is that longer maturity strips

have a higher volatility because their duration is higher. As a result, the Sharpe ratio is

downward sloping.

4.4 Lettau and Wachter (2007)

We finally consider the model by Lettau and Wachter (2007), which is designed to generate

a downward sloping term structure of expected returns. In their framework, the stochastic
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discount factor, which is specified exogenously, is given by:

Mt+1 = exp(−rf −
1

2
x2

t + xtεd,t+1) (18)

where xt drives the price of risk and follows an AR(1) process:

xt+1 = (1 − φx)x̄ + φxxt + σxεt+1 (19)

where εt+1 is a 3x1 vector of shocks and σx is 1x3 vector. Dividend growth is predictable

and given by:

∆dt+1 = g + zt + σdεt+1 (20)

where

zt+1 = ρzzt + σzεt+1 (21)

We use their quarterly calibration and compute dividend strips using the essentially affine

structure of the setup.15 For more details on the calibration and the computation of

dividend strips within their model, we refer to Lettau and Wachter (2007).

As before, we report for each dividend strip n the average annualized excess return

(risk premium), E(Rn,t+1)−Rf , the annualized volatility σ(Rn,t+1) and the Sharpe ratio.

The results are plotted in Figure 14. The term structure for the risk premium is downward

sloping and the term structure of volatilities is initially upward sloping up until 8 years,

and downward sloping thereafter. The Sharpe ratio is downward sloping.

5 Robustness

In this section, we perform several robustness checks of our empirical results.

5.1 Alternative selection criteria

In constructing the prices of dividend strips, we take the median across all matches of

put and call contracts with the same maturity and strike price, for a given maturity and

for which the prices are quoted within the same second. We select the time frame from

10am to 2pm. We now consider six alternative procedures to construct dividend prices.

In all cases, we report the summary statistics of dividend returns for strategy 1, and

15We apply a similar method to compute the dividend strips in the long run risk model as described
in appendix B.
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the CAPM alpha and beta.16 For Alternative 1, we first minimize the time difference

between contracts with the same maturity and strike price, we then select the moneyness

that is closest to one for a given maturity, and if multiple matches are found, we take

the median across the matches for that particular maturity. For Alternative 2, we first

minimize the time difference between contracts with the same maturity and strike price,

we then select the smallest bid-ask spread for a given maturity, and if multiple matches

are found, we take the median across the matches for that particular maturity. In case

of Alternative 3, we use the same matching procedure as in the benchmark case, but

narrow the time frame to 10am to 11am, and in case of Alternative 4, we consider the

time frame from 1pm to 2pm. We exclude the lunch period for the latter two alternative

matching procedures, which might be a period of lower liquidity. In case of Alternative

5, we consider all matches between put and call contracts for a given maturity and strike

price, but instead of minimizing over the time difference first, we take the median right

away. The advantage is that we take the median across a larger set of contracts, but the

time difference between the quotes might not be zero, which introduces noise. In practice,

there are so many quotes that the difference time stamps of quotes is in most cases small.

Finally, in case of Alternative 6, we again match all call and put contracts based on

maturity and the strike price. However, instead of minimizing the time difference first, we

first minimize over the bid-ask spread, and for the set of matches with the same spread

for a given maturity, we take the minimum time difference. If multiple matches exist for a

particular maturity, we take the median across the matches that have the smallest bid-ask

spread and time difference.

The results are presented in Table 7, in which Ai corresponds to Alternative i. Even

though the numbers change slightly across different matching procedures, which is not

unexpected, none of our main results is overturned for any of the cases. The dividend

strategy earns high average returns, has a relatively high volatility, has a modest CAPM

beta, and, as a consequence, a substantial CAPM alpha. It seems challenging to construct

an argument based on microstructure issues that explains all seven empirical facts of

dividend strategies, and is robust to all seven matching procedures we consider.

5.2 Dividend prices implied by futures contracts

As an alternative robustness check, we consider a different market to synthetically

construct dividend prices. Instead of relying on options markets, we use we data on

index futures. As discussed above, index futures do not have as long maturities as index

16The results for dividend steepener are highly comparable and are not reported for brevity.
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options, but we have access to maturities up to one year. Figure 11 displays the dividend

prices for a 6-month and 1-year contract implied by either futures data or options data.

To make both series stationary, we scale the price series by the level of the S&P500 index.

The relative price series clearly have the same level and are highly correlated; the full-

sample correlation equals 94% for the 6-month contract and 91% for the 1-year contract.

As such, explanations of our findings must also be able to explain the same phenomenon

in futures markets. Explanations for all facts solely based on market microstructure are

therefore, in our view, less convincing as index futures markets are among the most liquid

asset markets available.

6 Further applications

In this section, we illustrate two other applications that can be explored using the dividend

strips we compute in this paper.

6.1 Stochastic discount factor decompositions

Building on Bansal and Lehman (1997), Hansen, Heaton, and Li (2008) and Hansen

and Scheinkman (2009) show how to decompose the pricing kernel into a permanent and

temporary component. These decompositions are useful for various reasons. Alvarez

and Jermann (2005) for instance show that the ratio of the variance of the permanent

component to the overall variance is equal to one minus the ratio of the long-term bond

risk premium to the maximum risk premium across all securities. This insight can be used

to identify pricing factors and to generate additional restrictions for general equilibrium

asset pricing models.17 In addition, these decompositions are useful to understand how

future dividend prices respond to a shock to a macro-economic state variable today, see

Borovicka, Hansen, Hendricks, and Scheinkman (2009). Borovicka, Hansen, Hendricks,

and Scheinkman (2009) largely use these results to point out differences across asset

pricing models, but there is no empirical counterpart yet to which this models can

be compared. The methods we develop in this paper might be useful to advance our

understanding of the decomposition of the stochastic discount factor.

17See for instance Koijen, Lustig, and Van Nieuwerburgh (2009) and Koijen, Lustig, Van Nieuwerburgh,
and Verdelhan (2010).
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6.2 Market-implied expected returns and expected growth rates

Binsbergen and Koijen (2010) show how to use filtering methods to estimate expected

returns and expected growth rates. Filtering methods are required as the price-dividend

ratio is an affine function of expected returns and expected growth rates (see also

Section 5), which are both latent. However, if we use exactly the same model to price

dividend strips, it follows immediately that all dividend strips are affine in the same

two state variables, but with different loadings. Assuming that the model is correctly

specified, this implies, reminiscent to the term structure literature, that we can invert any

two dividend strips to recover market-implied expected returns and growth rates.18

7 Conclusion

We study the pricing of short-term assets whose payoff equals the dividends of the

aggregate stock market during a period of up to three years. To compute these prices, we

apply the put-call parity to a new data set of liquid, exchange-traded S&P500 options. We

compare the asset pricing properties of the claim to short-term dividends to the pricing of

the aggregate stock market, which is the claim to all future dividends. Using this approach,

we find that the short-term asset has a high expected returns, a beta to the market of

0.5, is excessively volatile, and has returns that are highly predictable. The returns on

short-term dividend claims cannot be explained by standard asset pricing models, which

makes such claims important candidate test assets. We compare our empirical results to

their theoretical equivalents in leading asset pricing models and find that none of them

predict the empirical findings we document.

18Additional notes are available upon request.
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A Details dividend returns

The two trading strategies described in Section 2.3 can be implemented for different

maturities T . The specific maturities we follow for trading strategy 1 vary between 1.9

years and 1.3 years. To be precise, for trading strategy 1, we go long in the 1.874 year

dividend claim on January 31st 1996, collect the dividend during February and sell the

claim on February 29th 1996 to compute the return. The claim then has a remaining

maturity of 1.797 years. We buy back the claim (or alternatively, we never sold it), go

long in the 1.797 year claim, collect the dividend, and sell it on March 29th 1996. We

follow this strategy until July 31st 1996 at which time the remaining maturity is 1.381

years. On this date a new 1.881 year contract is available so we restart the investment

cycle at this time, and continue until May of 2009, which is the end of our sample.

For trading strategy 2, we follow the same maturities, apart from the fact that we go

long in the 1.874 year dividend claim and short in the 0.874 dividend claim on January

31st 1996. On July 31st 1996 the remaining maturities are 1.381 years and 0.381 years at

which point we restart the investment cycle in the 1.881 year contract and the 0.881 year

contract available at that time.

B Forecasting returns and dividend growth rates

We follow Binsbergen and Koijen (2010) and use filtering techniques to predict future

dividend growth rates and returns. Let rt+1 denote the total log return on the index:

rt+1 ≡ log

(
St+1 + Dt+1

St

)

, (22)

where let PDt denote the price-dividend ratio:

PDt ≡
St

Dt

,

and let ∆dt+1 denote the aggregate log dividend growth rate:

∆dt+1 ≡ log

(
Dt+1

Dt

)

.
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We model both expected returns (µt) and expected dividend growth rates (gt) as an

AR(1)-process:

µt+1 = δ0 + δ1 (µt − δ0) + εµ
t+1, (23)

gt+1 = γ0 + γ1 (gt − γ0) + εg
t+1, (24)

where µt ≡ Et [rt+1] and gt ≡ Et [∆dt+1]. The distribution of the shocks εµ
t+1 and εg

t+1

is specified below. The realized dividend growth rate is equal to the expected dividend

growth rate plus an orthogonal shock:

∆dt+1 = gt + εD
t+1.

Defining pdt ≡ log(PDt), we can write the log-linearized return as:

rt+1 ' κ + ρpdt+1 + ∆dt+1 − pdt,

with pd = E [pdt], κ = log
(
1 + exp

(
pd
))

− ρpd and ρ =
exp(pd)

1+exp(pd)
, as in Campbell and

Shiller (1988). If we iterate this equation, and using the AR(1) assumptions (23)-(24), it

follows that:

pdt = A − B1 (µt − δ0) + B2 (gt − γ0) ,

with A = κ
1−ρ

+ γ0−δ0

1−ρ
, B1 = 1

1−ρδ1
, and B2 = 1

1−ργ1

. The log price-dividend ratio is linear

in the expected return µt and the expected dividend growth rate gt. The loading of the

price-dividend ratio on expected returns and expected dividend growth rates depends on

the relative persistence of these variables (δ1 versus γ1). The three shocks in the model,

which are shocks to expected dividend growth rates (εg
t+1), shocks to expected returns

(εµ
t+1), and realized dividend growth shocks (εd

t+1), have mean zero, covariance matrix

Σ ≡ var











εg
t+1

εµ
t+1

εd
t+1









 =






σ2
g σgµ σgD

σgµ σ2
µ σµD

σgD σµD σ2
D




 ,

and are independent and identically distributed over time. Further, in the maximum

likelihood estimation procedure, we assume that the shocks are jointly normally

distributed.

We subsequently perform unconditional maximum likelihood estimation to obtain
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estimates for all the parameters and obtain filtered series for µt and gt. The R2 values

are computed as:

R2
Ret = 1 −

ˆvar
(
rt+1 − µF

t

)

ˆvar (rt)
, (25)

R2
Div = 1 −

ˆvar
(
∆dt+1 − gF

t

)

ˆvar (∆dt+1)
, (26)

where ˆvar is the sample variance, µF
t is the filtered series for expected returns (µt) and

gF
t is the filtered series for expected dividend growth rates (gt).

C Dividend strips in the long-run risks model

In this appendix we derive dividend strips in a long run risk model as calibrated by Bansal

and Shaliastovich (2009). In their model, the log stochastic discount factor is given by:

mt+1 = µs + sxxt + sgs

(
σ2

gt − σ2
g

)
+ sxs

(
σ2

xt − σ2
x

)

−λησgtηt+1 − λeσxtet+1 − λgwσgwwg,t+1 − λxwσxwwx,t+1.

The short rate follows from:

Et (exp (mt+1)) = exp

(

Et (mt+1) +
1

2
vart (mt+1)

)

= exp

(

µs + sxxt + sgs

(
σ2

gt − σ2
g

)
+ sxs (σ2

xt − σ2
x) +

1
2
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with:

w0 = µs − sgsσ
2
g − sxsσ

2
x +

1

2

[
λ2

gwσ2
gw + λ2

xwσ2
xw

]
,

w1 = sx,

w2 = sgs +
1

2
λ2

η,

w3 = sxs +
1

2
λ2

e.
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The state variables satisfy the following dynamics:

∆ct+1 = xt + µg + σgtηt+1,

xt+1 = ρxt + σxtet+1,

σ2
g,t+1 = σ2

g + νg

(
σ2

gt − σ2
g

)
+ σgwwg,t+1,

σ2
x,t+1 = σ2

x + νx

(
σ2

xt − σ2
x

)
+ σxwwx,t+1,

∆dt+1 = µd + φxxt + ϕdσgtηd,t+1.

All shocks are independent, apart from: τ gd = corr
(
ηt+1, ηd,t+1

)
= cov

(
ηt+1, ηd,t+1

)
. All

unknown coefficients are defined in Koijen, Lustig, VanNieuwerburgh, and Verdelhan

(2009). The 1-period dividend strip follows from:
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As before, let D
(n)
t denote the price of a dividend at time t that is paid out in n period.

The following relationship then holds:

D
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t = Et

(

D
(n−1)
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which can be rewritten as:
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D Dividend strips in the rare disasters model

The setup of the Barro-Rietz rare disasters model as presented by Gabaix (2009) is as

follows. Let there be a representative agent with utility given by:

E0

[
∞∑

t=0

e−ρt C1−γ
t

1 − γ

]

(27)

At each period consumption growth is given by:

Ct+1

Ct

= eg
×

{

1 if there is no disaster at time t+1

Bt+1 if there is a disaster at time t+1
(28)

The pricing kernel is then given by:

Mt+1

Mt

= e−δ
×

{

1 if there is no disaster at time t+1

B−γ
t+1 if there is a distater at time t+1

(29)

where δ = ρ + g. The dividend process for stock i takes the form:

Di,t+1

Dit

= egiD
(
1 + εD

i,t+1

)
×

{

1 if there is no disaster at time t+1

Fi,t+1 if there is a distater at time t+1
(30)

where εD
i,t+1 > −1 is an independent shock with mean 0 and variance σ2

D, and Fi,t+1 > 0

is the recovery rate in case a disaster happens. The resilience of asset i is defined as:

Hit = ptE
D
t

[
B−γ

t+1Fi,t+1 − 1
]

where the superscript D signifies conditioning on the disaster event. Define Ĥit =

Hit − Hi∗, which follows a near-AR(1) process given by:

Ĥi,t+1 =
1 + Hi∗

1 + Hit

e−φH Ĥit + εH
i,t+1

where εH
i,t+1 has a conditional mean of 0 and a variance of σ2

H , and εH
i,t+1 and εD

i,t+1 are

uncorrelated with the disaster event. Under the assumptions above, the stock price is

given by:

Pit =
Dit

1 − e−δi

(

1 +
e−δi−hi∗Ĥit

1 − eδi−φH

)

29



where

δi = δ − giD − hi∗

hi∗ = ln Hi∗

Gabaix (2009) shows that the price at time t of a dividend paid in n periods is given by:

D
(n)
it = Dite

−δiT

(

1 +
1 − eφHn

φH

Ĥit

)

and that the expected return on the strip, conditioning on no disaster is given by:

Et [ln Rn,t+1] = Et

[

ln
D

(n−1)
t+1

D
(n)
t

]

≈ δ − Hit

The expected return is the same across maturities, because strips of all maturities are

exposed to the same risk in a disaster.19

The volatility of the linearized return is given by:

σn,t =

√

σ2
D +

(
1 − eφHn

φH

)2

σ2
H

which is increasing with maturity, due to the fact that higher duration cash flows are more

exposed to discount rate shocks than short duration cash flows. Given that the expected

return is constant across maturities and the volatility is increasing with maturity, the

Sharpe ratio is decreasing with maturity.

19We thank Xavier Gabaix for providing us with this derivation.
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Panel A: Full sample 1996:2 - 2009:5

R1,t R2,t Market S&P500

Mean 0.0120 0.0115 0.0054 0.0049
Median 0.0097 0.0148 0.0130 0.0104
Std. Dev. 0.0791 0.0979 0.0492 0.0472
Skewness 0.2199 0.3532 -0.8117 -0.6791
Kurtosis 10.3412 10.8974 4.1703 3.9013
Sharpe ratio 0.1155 0.0876 0.0514 0.0426

Observations 160 160 160 160

Panel B: First half sample 1996:2 - 2002:12

Mean 0.0159 0.0139 0.0060 0.0065
Median 0.0117 0.0231 0.0136 0.0093
Std. Dev. 0.0986 0.1212 0.0528 0.0514
Skewness 0.1070 0.2931 -0.6014 -0.4598
Kurtosis 8.1457 8.7394 2.8930 2.7453
Sharpe ratio 0.1242 0.0843 0.0564 0.0456

Observations 83 83 83 83

Panel C: Second half sample 2003:1 - 2009:5

Mean 0.0079 0.0089 0.0047 0.0031
Median 0.0077 0.0067 0.0129 0.0112
Std. Dev. 0.0508 0.0646 0.0453 0.0424
Skewness 0.2183 0.2014 -1.1925 -1.1584
Kurtosis 5.7627 6.3560 6.6587 6.3129
Sharpe ratio 0.1139 0.1050 0.0587 0.0248

Observations 77 77 77 77

Table 1: Descriptive Statistics
The table presents descriptive statistics of the monthly returns on the two trading strategies described
in the main text. As the volatility in the second half of the sample is lower than in the first half of the
sample, we also present descriptive statistics for two subsamples: 1996:2-2002:12 and 2003:1-2009:5.
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Dep. Var. R1,t+1 − Rf,t R2,t+1 − Rf,t

c 0.0079 0.0077 0.0073 0.0069
(0.0060) (0.0044) (0.0075) (0.0053)

mktrf 0.4879 0.5199 0.4912 0.5250
(0.1224) (0.1174) (0.1539) (0.1454)

AR(1) - -0.2935 - -0.3396
- (0.0731) - (0.0738)

R2 0.0914 0.1764 0.0606 0.1809

Table 2: Monthly returns on the two trading strategies and the market portfolio.
The table presents OLS regressions of the returns on trading strategies 1 and 2 (dependent variables) on
the market portfolio. Standard errors in parentheses.

Dep. Var. R1,t+1 − Rf,t R2,t+1 − Rf,t

c 0.0069 0.0070 0.0057 0.0056
(0.0061) (0.0045) (0.0075) (0.0053)

mktrf 0.5176 0.5426 0.5987 0.6248
(0.1303) (0.1248) (0.1623) (0.1533)

hml 0.1954 0.1765 0.4305 0.3988
(0.1833) (0.1757) (0.2283) (0.2159)

smb 0.0959 0.1074 -0.0158 0.043
(0.1679) (0.1607) (0.2092) (0.1979)

AR(1) - -0.2917 - -0.3306
- (0.0734) - (0.0737)

0.0982 0.1611 0.0854 0.1919

Table 3: Monthly Returns on the Two Trading Strategies and the Three Factor Model.
The table presents OLS regressions of the returns on trading strategies 1 and 2 (dependent variables) on
the Fama French three factor model. Standard errors in parentheses.
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Dep. Var. R1,t+1 R2,t+1 RSP500,t+1

Mean equation

c 0.0073 0.0083 0.0069
(0.0046) (0.0041) (0.0038)

AR(1) -0.2905 -0.3954 0.0790
(0.1059) (0.1094) (0.0996)

Variance equation

c 1.3 x 10−4 2.4 x 10−4 6.8 x 10−5

(7.2 x 10−5) (1.5 x 10−4) (5.2 x 10−5)
squared residual 0.1324 0.1985 0.1937

(0.0421) (0.0621) (0.0761)
GARCH(1) 0.8728 0.8174 0.8071

(0.0275) (0.0518) (0.0610)

Table 4: Estimates of the GARCH(1,1) model
The top panel provides the estimates of the mean equation; the bottom panel displays the estimates of
the variance model. The first two columns report the results for the dividend return strategies, and the
third column provides the results for the S&P500.

Sample period 1946-2007 1970-2007 1989-2007

δ0 0.0899 0.0782 0.0885
δ1 0.9267 0.9349 0.8734
γ0 0.0616 0.0564 0.0716
γ1 0.4856 0.6966 0.7901
σµ 0.0179 0.0166 0.0318
σg 0.0465 0.0328 0.0324
σD 0.0035 0.0038 0.0025
σgµ 0.4939 0.4981 0.8153
σµD 0.8581 0.8631 -0.5745

R2
Ret 0.0977 0.0904 0.2451

R2
Div 0.2423 0.4086 0.5670

Table 5: Maximum-likelihood estimates
We present the estimation results of the present-value model. The model is estimated by unconditional
maximum likelihood using data over three different sample periods, 1946-2007, 1970-2007, 1989-2007 on
cash-invested dividend growth rates and the corresponding price-dividend ratio.
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Dep. Var. R1,t+1

C 0.1904 0.1539 0.1379
(0.0452) (0.0496) (0.0373)

Pt,T /Dt -0.1820 - -0.1285
(0.0456) (0.0377)

Pt,T /Dt smoothed - -0.1445 -
(0.0500)

AR(1) - - -0.2616
(0.0840)

R2 0.0983 0.0547 0.1516

Table 6: Return predictability
The table presents regressions of the monthly return series on trading strategy 1, R1,t+1, on the ratio of
the one-year dividend strip at time t, denoted by Pt,T , and the aggregated dividend paid out over the
previous twelve months, where dividends are reinvested in the risk free rate. We also regress returns on
a smoothed version of Pt,T /Dt, where the smoothed ratio is computed by taking a rolling average over
the past three values of Pt,T /Dt.

Benchmark A1 A2 A3 A4 A5 A6

Mean 0.0120 0.0124 0.0149 0.0122 0.0120 0.0121 0.0141
Median 0.0097 0.0139 0.0056 0.0102 0.0091 0.0091 0.0045
St. Dev. 0.0791 0.1041 0.1332 0.0799 0.0792 0.0790 0.1291
Skewness 0.2199 0.6967 1.0808 0.2856 0.9186 0.1663 0.8522
Kurtosis 10.3412 12.3240 9.6743 8.0964 13.9763 9.8261 8.9516
Sharpe ratio 0.1155 0.0913 0.0901 0.1164 0.1149 0.1165 0.0868

CAPM Alpha 0.0079 0.0083 0.0100 0.0081 0.008 0.0079 0.0094
CAPM Beta 0.4879 0.4528 0.8020 0.4844 0.4236 0.4907 0.7228

Table 7: Alternative selection criteria
The table presents the summary statistics of dividend strategy 1 for six alternative selection criteria (A1
to A6), which are described in the main text. The table also reports the CAPM alpha and beta.
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Figure 1: Maximum maturity of LEAPS
The graph displays the maximum maturity of LEAPS contracts that is available at each point of the
sample. The sample period is January 1996 up to May 2009.
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Figure 2: Average number of matches
The graph shows the average number of matches of put and call contracts with strike prices and maturities
that coincide, and for which the quotes are provided in the same second during the last trading day of
the month. We focus on contracts with a maturity between 1 and 2 years, and average the number of
matches within a year. We report the natural logarithm of the number of matches. The sample period
is January 1996 up to May 2009.
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Figure 3: Price dynamics of the short-term assets (Cumulative)
The graph shows the prices of the first 0.5, 1, 1.5 and 2 years of dividends. The sample period is January
1996 up to May 2009.
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Figure 4: Present value of dividends as a fraction of the index value (Cumulative)
The graph shows the net present value of the first 0.5, 1, 1.5 and 2 years of dividends as a fraction of the
index value as computed. The sample period is January 1996 up to May 2009.
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Figure 5: Monthly returns on trading strategy 1: 1996:2-2009:5: line graph.
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Figure 6: Monthly returns on trading strategy 2: 1996:2-2009:5: line graph.
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Figure 7: Monthly returns on trading strategy 1: 1996:2-2009:5: histogram.
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Figure 8: Monthly returns on trading strategy 2: 1996:2-2009:5: histogram.
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Figure 9: Prices and realizations of dividend claims: 1996:2-2009:5.
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Figure 10: Volatility of dividend returns and returns on the S&P500 based on a
GARCH(1,1) model.
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Figure 11: Short-term asset prices implied by futures and options
The graph shows the price of the short-term assets implied by futures and option markets. The maturity
of the short-term asset equals either 0.5 year or 1 year.
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Figure 12: Term Structure of the Risk Premium, Volatility and Sharpe Ratio for External Habits
The graph shows the term structures of the risk premium, the volatility and the Sharpe ratio for the Campbell Cochrane (1999) habit formation
model. The graph plots the first 480 months of dividend strips, which corresponds to 40 years.
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Figure 13: Term Structure of the Risk Premium, Volatility and Sharpe Ratio for the Long Run Risk Model
The graph shows the term structures of the risk premium, the volatility and the Sharpe ratio for the long run risk model as calibrated by Bansal and
Shaliastovich (2009). The graph plots the first 480 months of dividend strips, which corresponds to 40 years.
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Figure 14: Term Structure of the Risk Premium, Volatility and Sharpe Ratio for the Lettau Wachter (2007) Model
The graph shows the term structures of the risk premium, the volatility and the Sharpe ratio for the Lettau Wachter (2007) model. The graph plots
the first 120 quarters of dividend strips, which corresponds to 40 years.
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